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Abstract—ICD-9 (the Ninth Revision of International Classification of Diseases) is widely used to describe a patient’s diagnosis.

Accurate automated ICD-9 coding is important because manual coding is expensive, time-consuming, and inefficient. Inspired by the

recent successes of deep learning, in this study, we present a deep learning framework called DeepLabeler to automatically assign

ICD-9 codes. DeepLabeler combines the convolutional neural network with the ‘Document to Vector’ technique to extract and encode

local and global features. Our proposed DeepLabeler demonstrates its effectiveness by achieving state-of-the-art performance, i.e.,

0.335 micro F-measure on MIMIC-II dataset and 0.408 micro F-measure on MIMIC-III dataset. It outperforms classical hierarchy-based

SVM and flat-SVM both on these two datasets by at least 14 percent. Furthermore, we analyze the deep neural network structure to

discover the vital elements in the success of DeepLabeler. We find that the convolutional neural network is the most effective

component in our network and the ‘Document to Vector’ technique is also necessary for enhancing classification performance since it

extracts well-recognized global features. Extensive experimental results demonstrate that the great promise of deep learning

techniques in the field of text multi-label classification and automated medical coding.

Index Terms—ICD-9 coding, multi-label classification, convolutional neural network, document to vector
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1 INTRODUCTION

WITH the rapid development of medical field, the Ninth
Revision of International Classification of Diseases

(ICD-9) codes are widely used to describe a patient’s diag-
nosis including symptoms, statistical analysis of mortality
rate and medical reimbursement [1]. ICD-9 codes mean that
each disease has a unique code and is used in the electronic
health records as a billing mechanism. Usually, ICD-9 codes
are undertaken by the coders of the hospital’s Medical
Record Department who assign ICD-9 codes to medical
record according to a doctor’s clinical diagnosis. However,
because they need to master specialized skills such as the
knowledge in the field of medicine, coding rules and medi-
cal terminologies, manual coding is expensive, time-con-
suming and inefficient. Considering these constraints, it is
urgent to develop an accurate computational approach for
automated ICD-9 coding.

Developing an accurate computational system to support
automated ICD-9 coding based on medical diagnosis docu-
ment is still a challenging task. The automated ICD-9 coding

task usually has the following problems: 1) Patient’s clinical
records is not always structured in the same way. It is very
difficult to extract important and relevant knowledge from
various kinds of medical records effectively. 2) The medical
field has a lot of terminologies, which is difficult for non-
professionals to understand the meaning of these terminolo-
gies. Additional tools are needed to interpret the some
terms and symptoms and to get semantic information from
medical records. 3) Each physician usually has his own way
to describe symptoms. Therefore, even for the same disease,
there are many different ways to describe it.

Since the early 1990s, many scientists have explored how
to automatically assign ICD-9 codes based on clinical
records. In recent years, more and more scientists applied
machine learning methods to automatically assign ICD-9
codes such as support vector machine (SVM) [2], [3], [4], [5],
Naive Bayes [6], [7], k-nearest neighbors [8], [9], topic model
[10], [11], and other techniques based on Natural Language
Processing [12], [13], [14], [15]. Perotte et al. [5] proposed
novel evaluation metrics, which reflect the distances among
gold-standard and predicted codes and their locations in the
ICD-9 tree. They used a support vector machine (SVM) clas-
sifier to make prediction. Medori et al. [6] conducted four
experiments based on Naive Bayes with varying sets of
attributes. Their experiments obtained recall of 81.8 percent
and demonstrated the importance of powerful machine
learning method and stemming features. Ruch et al. [8] com-
bined a set of machine learning (k-nearest neighbors) and
data-poor methods to generate a single automatic text cate-
gorizer. The combined ranking system obtained a precision
of 75 percent at high ranks and a recall of about 63 percent
for the top twenty returned codes. Chen et al. [12] employed
a deep-level semantic analysis approach that involves
dependency parsing, parse tree matching, and semantic
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matching score calculation between training and testing cor-
pus, which overcomes the knowledge acquisition bottleneck
in an unsupervised method. Pereira et al. [13] proposed a
text mining approach by using processed electronic medical
records based on K-Nearest Neighbor classifier. Their results
suggest a good performance proposing a diagnosis from
electronic medical records. Chen et al. [15] presented an
improved approach based on the Longest Common Subse-
quence and semantic similarity for automatic diagnoses,
their method can increase the accuracy of processing in Chi-
nese disease mapping. Ira Goldstein et al. [16] applied three
systems (search engine, boosting algorithm and rule-based
model) for automatically predicting the ICD-9 codes. Their
evaluation shows that semantic information significantly
contributes to ICD-9 codingwith lexical elements.

To further improve machine learning methods for auto-
matically assigning ICD-9 codes, we borrow the ideas from
very recent breakthrough in deep learning [17]. In the past
few years, deep learning techniques, particularly convolu-
tional neural networks (CNN), have demonstrated to be
effective for computer vision tasks such as medical image
classification [18], [19], object detection [20] and image seg-
mentation [21] and so on. The main advantage of CNN is its
capability of automatic detection of image local features and
simplification of the conventional image analysis pipelines.
It is well known that local context feature is critical for auto-
matical ICD-9 code assignments from the discharge sum-
mary contents. Specifically, medical terminologies which
consist of words are probably the most effective features for
ICD-9 code assignments. CNN can be applied to extracting
local contextual features from medical texts. In this study,
we used CNN to extract local features from patient records.

On the other hand, global features also are vital for auto-
matical ICD-9 code assignments. We innovatively apply the
‘Document to Vector’ (D2V) technique for automatically
assigning ICD-9 codes. The ’Document to Vector’ is an unsu-
pervised algorithm, which was proposed by Le et al. [22] to

learn fixed-length feature representation from variable-
length documents. In D2V training processing, each docu-
ment and word is encoded as a unique dense vector. We call
the document vector as document embedding (DE) and
word vector as word embedding (WE). These vectors are
concatenated together to predict the next word in its context.
D2V can capture effective global features of given medical
text. Specifically, D2V generates document vectors and word
vectors which are stored in the training dataset. Then, each
document vector in the training dataset can be regarded as a
summary of a medical text. Finally, we can use them to train
CNN for prediction. To the best of our knowledge, D2V tech-
nique has never been utilized in the task of ICD-9 assignment.

In this paper, we propose an end-to-end deep learning
framework, so-called DeepLabeler, which combined CNN
with D2V technique to automatically assign ICD-9 codes.
DeepLabeler combines the advantages of CNN andD2V tech-
nique,which captures not only complicated local text relation-
ships, but also models document topics in a neural network.
We perform extensive experiments onMIMIC-II andMIMIC-
III datasets [23] and the results demonstrate that our Deep-
Labeler outperforms the hierarchy-based SVM [5] with a rela-
tively strict Micro F-measure of 0.335 and 0.408, respectively.
Furthermore, we find that DeepLabeler performs better when
the number of dataset samples becomes larger.

2 METHODS

2.1 Overview: DeepLabeler

As shown in Fig. 1, DeepLabeler consists of two steps for
automatical ICD-9 code assignment. The first step is feature
extraction while the second one is multi-label classification.
Feature extraction has two parallel parts: (a) the CNN part
to extract rich local features, and (b) the D2V part to capture
semantic information in a whole document by taking the
ordering of the words into consideration. The classification
step uses a fully connected layer with the sigmoid activation

Fig. 1. Overview of proposed DeepLabeler methodology. The input is a discharge summary ((a) input data), through D2V part ((b) D2V part, which is
used to extract local features) and CNN part ((c) CNN part, which is used to extract global features), then (d) outputs of two parts concatenated to a
whole vector. The vector is fed into the fully connected layer for classification.
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function to predict the probability of each ICD-9 code. Spe-
cifically, we need to pre-train the word vectors (WE) and
document vectors (DE) before training DeepLabeler. Given
a document, we use the word vectors to train the CNN part
and obtain a highly informative feature vector which can
represent the whole document. At the same time, the docu-
ment vector is fine tuned by one fully connected layer of
D2V part and then is concatenated with another feature vec-
tor generated by CNN. Finally, a full connection layer is
stacked to output a result vector which can represent the
probability of each ICD-9 code. The sigmoid activation func-
tion is applied in the output layer which is the practice of
multi-label learning. Finally a code is assigned when the
output score is greater than a pre-determined threshold.

2.2 Preliminaries

Automated ICD-9 coding is a multi-label classification prob-
lem. CNN is well-accepted for document classification
recently as it can capture phrase-level or sentence-level fea-
tures [24], [25], [26], [27]. Besides, D2V technique, as a text
representation approach, can obtain diverse semantic repre-
sentation for documents from different clinical free texts [22].
These two approaches are combined to use for constructing
the feature selection part of deep learning model. D2V tech-
nique uses the entire database to train the deep learning
model and obtains document vectors which capture global
features and semantic information. CNN utilizes convolu-
tional kernels to extract the features of sentences and obtains
feature vectors which capture local features of documents.
The two types of vectors are complementary in our proposed
model. The details of these two approaches are as follows.

2.2.1 Document to Vector

Word representation technique plays an important role in
many natural language processing tasks, e.g., text classifica-
tion, sentiment analysis. Recently, more and more word
representation technique, such as Word2Vec, and Docu-
ment2Vec (D2V), has been proposed to handle natural lan-
guage understanding task [22], [28], [29]. These dense
vectors have potential to improve the performance of auto-
mated ICD-9 code assignments. D2V, a deep learning
method, learns dense vector representation of documents
at the semantic level and achieve good performance in
many researches [30], [31], [32]. Fig. 2 illustrates the network

architecture of generating a document vector. In this frame-
work, every word and the whole document is represented a
unique dense vector. Then the document and words vectors
are concatenated to predict the next word in its context. In
this way, the word order is kept, and thus better vector rep-
resentations can obtained. A fully connected neural network
with one hidden layer is used to train the model. Back prop-
agation algorithm with stochastic gradient descent is used
in the fully connected neural network. The learning meth-
ods of document vector and word vectors are regarded as
unsupervised preprocessing of clinical free texts.

2.2.2 Convolutional Neural Network

CNN is a class of deep, feed-forward artificial neural net-
works that have successfully been applied to computer
vision [33], [34]. CNN models are widely used in various
Natural Language Processing (NLP) problems and have
achieved promising results in semantic parsing [35], search
query retrieval [36], sentence modeling [25], sentence classi-
fication [24], prediction [37] and other traditional NLP tasks
[38]. CNNs utilizes layers with convolving filters that are
applied to local features [39]. This means that the network
automatically learns the features that were hand-engineered
in traditional algorithms. The effectiveness of local features
and independence from human effort in feature design are
two major advantages in CNN. Fig. 3 illustrates how CNN is
used for document classification and local features extraction
from a document. In NLP task, local features can be regarded
asword-level or phrase-level features for a given document.

Before using the CNN model, it is general to translate
each word in the documents into a low dimensional dense
word vector using W2V technology, and then all the word
vectors in the same document can make up a matrix. The
document matrix is finally fed to the CNN model for gener-
ating a fixed length vector. The output of this process is a
feature vector which can represent the document in a low
dimensional dense form. Unlike D2V, it is a process of
supervised learning based on stochastic gradient descent
and back propagation.

2.3 The Benefits of DeepLabeler

CNN can extract rich local features, but has two major
defects in extracting features of medical data in our task.

Fig. 2. The network architecture of generating a document vector.
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First, CNN ignores the semantic features of the full text
because it does not take into account the order of words or
phrases. It can be considered as a variant of the ’bag of
word’ representation while capturing more informative fea-
tures than unigram or bigram models. Second, the number
of words in a discharge summary note varies from dozens
to thousands, but CNN model only takes a unchanged
shape matrix as input. This means that a large amount of
document matrix must be either truncated or padded by
some zeros, which may lose a certain proportion of the orig-
inal information in the document. Therefore, the perfor-
mance of the CNN model may be seriously affected when
the length of each document varies significantly. Foreseeing
these problems, we realize that the D2V part can be an
important complement to the CNN part. Fortunately, D2V
is able to avoid the above two problems. D2V captures
semantic information of a whole document by taking the
order of words into consideration. More importantly, the
D2V part put all words in a document for training, thus it
would not discard any useful word information, which is
not possible for CNN part. Therefore, we are inspired to
integrate the CNN and D2V parts to achieve the better per-
formance in this multi-label classification and natural lan-
guage understanding task.

3 EXPERIMENTS

3.1 Dataset

MIMIC (Multi-parameter Intelligent Monitoring in Intensive
Care) is a real-world Intensive Care Unit (ICU) database and
it is a popular database for studying automated ICD-9 cod-
ing. It is a publicly available database developed by the MIT
Lab for Computational Physiology, comprising de-identified
health data associated with tens of thousands critical care
patients [23]. It includes discharge summaries, diagnostic
codes, vital signs, laboratory measurements, etc. The latest
version of MIMIC is MIMIC-III (http://mimic.physionet.
org/), which comprises over 58,000 hospital admissions [23].
The data spans June 2001-October 2012. The MIMIC-II is an
older version from 2001 to 2008. Because these medical
records are from the ICU patients, the distribution of the dis-
eases has a certain tendency that serious diseases are likely
to be overrepresented. In MIMIC, there is a large amount of
data that is not relevant to disease classification. In order to
facilitate the study, we focus on understanding the clinical
free texts, i.e., discharge summaries only.

Each patient in the MIMIC database is associated with a
list of ICD-9 codes that are the labels in the experiments.
One ICD-9 code can indicate a classification of a disease,
diagnostic or symptom, injury or a treatment procedure.
This is a typical NLP task of text semantic parsing and
multi-label classification [40], [41]. We use the discharge
summary of each patient as the training data for our model.

In MIMIC-III, the longest discharge summary contains
7,980 words while the shortest one has only 9 words before
data preprocessing. The database currently contains 6,984
ICD-9 codes, showing a highly skewed distribution, with
the top 105 codes making up 50 percent of the total codes.
Fig. 4 shows a cumulative distribution function curve of the
ICD-9 codes. A brief description of the statistics of MIMIC-
III dataset is summarized in Table 1.

The automated ICD-9 coding is a multi-label classifica-
tion problem [42], [43], [44]. Each medical record has multi-
ple ICD-9 codes and each ICD-9 code is one of the multiple
labels in classification. Although some problems of auto-
mated ICD-9 coding were mentioned in the Introduction
section, now some specific ICD-9 coding problems related
to the MIMIC dataset need to be taken care of. There are
three factors that make automated ICD-9 coding difficult.
First, the number of ICD-9 codes is large and the distribu-
tion of ICD-9 codes is a serious biased distribution. Table 2
shows six ICD-9 codes, ranked as 1st, 10th, 50th, 100th,
500th and 1,000th in terms of their frequencies in all 58,929
medical records from our dataset. The most frequent ICD-9
code, 401.9 (Hypertension), appears in 35.1 percent medical
records, while the 1,000th frequent ICD-9 code, 999.8 (Other

Fig. 3. The process of extracting features from CNN.

Fig. 4. Cumulative distribution of ICD-9 codes of MIMIC-III.

TABLE 1
Basic Statistics of the MIMIC-III Dataset

Total # of discharge
summary

52,962 Total # of codes 6,984

Avg. # of words per
discharge summary

1,524 Avg. # of codes per
patient

11

Max # of words per
discharge summary

7,980 Max # of codes per
patient

39

Min # of words per
discharge summary

9 Min # of codes per
patient

1
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and unspecified transfusion reaction not elsewhere classi-
fied), appears in 0.14 percent of the medical records only.
This means that most of ICD-9 codes only have a few anno-
tated medical records and thus it causes a serious imbalance
of dataset distribution. Second, each patient has different
number of ICD-9 codes which varies greatly. Some patients
may have up to 39 associated codes, while the others may
have only one code. Third, the average of number of sam-
ples of each code is small. The number of codes is 6,984 and
the number of samples is 52,962, thus the average number
of samples of each code is only about 7.58, which indicates
most of them lack enough samples for training and leads to
a poor performance of classification.

3.2 Implementation

We used an open-source tool, Tensorflow [45] (https://
www.tensorflow.org/), to implement the CNN model. Doc-
ument embedding and word embedding were implemented
by using Gensim (http://radimrehurek.com/gensim). The
skip-gram model was used to train the word embedding
vectors in Gensim.

3.3 Evaluation Metrics

Choosing appropriate evaluationmetrics inmulti-label classi-
fication is important to evaluate the performance of classifiers.
There aremany types of evaluationmetrics inmulti-label clas-
sifications [46].We usedmicro-average precision, micro-aver-
age recall and micro-average F-measure to evaluate the
performance of ourmodel. They are defined as follows:

MiP ¼
PM

m¼1

PN
i¼1 y

m
i ŷ

m
i

PM
m¼1

PN
i¼1 ŷ

m
i

(1)

MiR ¼
PM

m¼1

PN
i¼1 y

m
i ŷ

m
i

PM
m¼1

PN
i¼1 y

m
i

(2)

Micro F -measure ¼ 2�MiP �MiR

MiP þMiR
; (3)

where M is the number of all ICD-9 codes, N is the number
of all samples, yi and ŷi 2 f0; 1gM are the true and predicted
label for sample i, respectively.

F-measure is the harmonic mean of precision and recall,
which is a good indicator for the overall predictive power of
models. It is the most important metric in automated ICD-9

coding task[47]. Our model returns the probability for each
ICD-9 code, which allows for further tuning to optimize the
precision and recall. This tuning is carried out by specifying
a threshold in this study, as the models have already been
optimized for F-measure. Micro-averaged F-measure is cho-
sen for our interest in predicting correct ICD-9 codes for as
many patients as possible, rather than ensuring good cover-
age of the different classes.

The F-measure averaged over single codes has been
widely used in multi-label learning. For instance, Perotte
et al. used it to evaluate the performance of the flat and hier-
archy-based SVMmodel [13]. BioASQ challenge, an interna-
tional competition about automatically annotating new
MEDLINE citations using MeSH, took the micro F-measure
as the main evaluation metric [48].

3.4 Baseline Model

Perotte et al. [13] used flat SVM as a baseline model on
MIMIC-II dataset (22,815 documents) with documents rep-
resented using a ‘bag of words’ (BoW) model [49] and pro-
posed a hierarchy-based SVM which obtained a higher
F-measure value than flat SVM. The flat SVM treats each
ICD-9 code independently of each other, but hierarchy-
based SVM leverages the hierarchical nature of ICD-9 codes
into its modeling. The hierarchy-based SVM tends to
achieve a higher recall and F-measure at the tradeoff of pre-
cision in their conclusions. Both models will be compared
on MIMIC dataset in this study.

3.5 Experiment on MIMIC-III

In order to illustrate the effectiveness of our proposed
model, we study automated ICD-9 coding by using dis-
charge summaries from the publicly available MIMIC-III
dataset. We extracted 52,962 discharge summaries from the
MIMIC-III, and a total number of ICD-9 codes are 6,984. We
split the total discharge summaries into a training set which
consists of 47,665 documents and a test set which has 5,297
documents, the experimental results are shown in Table 3.

It is important to note that the CNN architecture we
used in this medical coding problem is the classic single-
layer multi-channel convolutional network, which has
been proved to have a good performance in text classifica-
tion and sentiment analysis [24], [26], [50]. To obtain the
best performance of DeepLabeler, we searched for a set of
various parameters of network architectures to find the
best parameters for automated ICD-9 coding. These param-
eters include: 1) CNN part: word embedding size, the

TABLE 2
The 1st, 10th, 50th, 100th, 500th and 1000th ICD-9 Code

in Terms of the Frequencies of Appearances in
58,929 Medical Records from MIMIC-III

Rank ICD-9 Code Frequency
of Patients
with Code

1 401.9: Hypertension 0.3513
10 530.81: Esophageal reflux 0.1073
50 276.7: Hyperpotassemia 0.0368
100 V10.46: Personal history of

malignant neoplasm of prostate
0.0205

500 785.2: Undiagnosed cardiac murmurs 0.0037
1,000 999.8: Other and unspecified transfusion

reaction not else-where classified
0.0014

TABLE 3
Model Performance of the ICD-9 Coding on Test Sets of
MIMIC-III, Which Contains 6,984 Associated Codes

Micro-
average
Precision

Micro-
average
Recall

Micro-
average

F-measure

flat-SVM 0.635 0.158 0.253
hierarchy-based
SVM

0.415 0.280 0.335

D2V+CNN
(threshold ¼ 0.2)

0.486 0.351 0.408

D2V+CNN
(threshold ¼ 0.3)

0.555 0.292 0.383
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maximum length of notes, convolutional kernel size, con-
volutional filter number, convolutional layer number and
dropout rate; 2) D2V part: document embedding size, the
number of neurons in the hidden layer. The optimal struc-
ture (see Tables 4 and 5) was found to be: word embedding
size (CNN part): 100, the maximum length of notes, (CNN
part): 700, convolutional kernel size (CNN part): 3, 4, 5,
convolutional filter number (CNN part): 64, 64, 64, convo-
lutional layer number (CNN part): 1, dropout rate (CNN
part): 0.75, document embedding size (D2V part): 128, the
number of neurons in hidden layer (D2V part): 64, and
dropout rate (D2V part): 0.75.

Besides tuning different parameters of network architec-
tures, choosing an appropriate threshold is crucial for classi-
fication when using deep learning models. A code is
classified as a positive sample only if its score generated by
a model is greater than the threshold. In order to obtain the
best F-measure, our model has run with different threshold
values. Figs. 5c and 5d represent the effect of threshold
parameter on the classification of MIMIC-III where thresh-
old takes the values between 0.1 and 0.95. As a result of
experiments, the best result is obtained with the threshold
value of 0.2. When the threshold is equal to 0.2, our model
outperforms the hierarchy-based SVM with F-measures of
0.408 and 0.335, respectively. Notice that the evaluation
metrics here do not use the hierarchical structure of ICD-9
code tree but instead only use the exact gold-standard
matches count as true positives. This is usually stricter than
using other hierarchical evaluation approaches [46], [51].

3.6 Experiment on MIMIC-II

Because the MIMIC-III dataset is a relatively newer dataset,
most researchers still use MIMIC-II dataset which is widely
used in the study of ICD-9 coding in the last decade. In order
to better evaluate the performance of our model, we also
applied DeepLabeler on MIMIC-II dataset. There are 22,815
discharge summaries with diagnosis code were collected
from MIMIC-II. A total number of diagnosis codes are 5,031.
We split the data into a training set and a test set consisting of
20,533 and 2,282 documents of the full dataset, respectively.

The same as the operation carried out on MIMIC-III,
we first tune different parameters of network architectures
(see Tables 6 and 7). The best model parameters are found
to be: word embedding size (CNN part): 100, the maximum
length of notes (CNN part): 700, convolutional kernel size

TABLE 4
The Best Parameters of Network

Architecture (CNN Part) on MIMIC-III

CNN part

word embedding size 100
Maximum length 700
convolutional kernel size 3, 4, 5
convolutional filter number 64, 64, 64
convolutional layer number 1
dropout rate 0.75

TABLE 5
The Best Parameters of Network Architecture

(D2V Part) on MIMIC-III

D2V part

document embedding size 128
the number of neurons in hidden layer 64
dropout rate 0.75

Fig. 5. Model performance of the ICD-9 coding on test sets of MIMIC-II (a), (b) and MIMIC-III (c), (d).
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(CNN part): 1, 3, 5, convolutional filter number (CNN part):
64, 64, 64, convolutional layer number (CNN part): 1, drop-
out rate (CNN part): 0.9, document embedding size (D2V
part): 128, the number of neurons in hidden layer (D2V
part): 64, dropout rate (D2V part): 0.9. Then we test the
threshold parameter over different values. Figs. 5a and 5b
show the effect of threshold parameter on the classification
of MIMIC-II where the threshold value ranges from 0.1 to
0.95. Note that the best value is no longer 0.2, but 0.25.
When the threshold is 0.25, our model outperforms the hier-
archy-based SVM with F-measures of 0.335 over 0.293. Both
precision and recall are higher than the hierarchy-based
SVM. The experimental result on MIMIC-II is obviously
poorer than MIMIC-III because the number of training data
of MIMIC-II is only a half of that of MIMIC- III.

3.7 Result Analysis

Tables 3 and 8 compare the micro-average precision, micro-
average recall and micro-average F-measure of our method
with the other baseline model on MIMIC-III and MIMIC-II
datasets, respectively. Our method significantly outper-
forms the flat-SVM and hierarchy-based SVM on the two
datasets. Note that micro-average F-measure is the most
important metric. On MIMIC-III dataset, DeepLabeler
achieves micro-average precision, micro-average recall and
micro-average F-measure of 0.486, 0.351 and 0.408, respec-
tively, significantly outperforming flat-SVM (0.635, 0.158
and 0.253, respectively) and hierarchy-based SVM (0.414,
0.280 and 0.335, respectively). On MIMIC-II dataset, Deep-
Labeler obtains micro-average precision, micro-average
recall and micro-average F-measure of 0.475, 0.258 and
0.335, respectively, performing better than flat-SVM (0.562,
0.130 and 0.211, respectively) and hierarchy-based SVM
(0.395, 0.233 and 0.293, respectively). These micro-average
F-measure values have showed that DeepLabeler is much
better than flat-SVM and hierarchy-based SVM. Compared
the results of MIMIC-III with those of MIMIC-II, we can see
that the performance of DeepLabeler on MIMIC-III is better
than MIMIC-II. We believe that it is because the number of
samples of MIMIC-III is bigger than that of MIMIC-II due to

the fact that the deep learning model is often more effective
when more data are available.

To discover the vital elements in the success of our pro-
posed model, we conduct a study by removing individual
components in our network. Specifically, we have tested the
performance of models without the CNN part or D2V part.
From the results on the MIMIC-III dataset presented in
Table 9, we can see that the CNN part is the most effective
component in our network as the micro-average precision,
micro-average recall and micro-average F-measure drop to
0.375, 0.261 and 0.308, respectively (without CNN part). D2V
is also important as the micro-average precision, micro-aver-
age recall and micro-average F-measure drop to 0.440, 0.366
and 0.399, respectively (without D2V part).We conclude that
compared with CNN part, the D2V part in our model is nec-
essary for dealing with global features, which contributes to
classification performance enhancement.

Our results indicate that the proposed model predicts
ICD-9 codes with a much higher F-measure than the tradi-
tional methods such as flat SVM and hierarchy-based SVM.
Because the semantic features of text are difficult to extract
manually, using SVM only is not able to effectively address
this NLP task of text semantic parsing and multi-label classifi-
cation, even considering the hierarchical structure of the ICD-9
codes. Our model ignores the hierarchical information, but it
naturally takes into account the dependent relationship among
codes. Thismulti-label learningmethod can be considered as a
multi-task learning process, and each label prediction task is
not independent with each other [52]. As there may be a close
link between different diseases, we should consider this corre-
lation between different ICD-9 codes when constructing a new
model. Besides the correlation between ICD-9 codes, our
model considers both local features by CNN and the global
features byD2V. The proposedmodel captured theword-level
features, phrase-level features and their order especially the
semantic features of the document. It is important to note that
F-measure is not very high because we used relatively strict

TABLE 8
Model Performance of the ICD-9 Coding on Test Sets of

MIMIC-II, Which Contains 5,031 Associated Codes

Micro-
average
Precision

Micro-
average
Recall

Micro-
average

F-measure

flat-SVM 0.562 0.130 0.211
hierarchy-based SVM 0.395 0.233 0.293
D2V+CNN (threshold ¼ 0.25) 0.475 0.258 0.335
D2V+CNN (threshold ¼ 0.5) 0.616 0.159 0.253

TABLE 9
Model Performance of the ICD-9 Coding on Test Sets of
MIMIC-III, Which Contains 2,282 Discharge Summaries

and 6,984 Associated Codes

Model Micro-
average
Precision

Micro-
average
Recall

Micro-
average

F-measure

Only using CNN 0.440 0.366 0.399
Only using D2V 0.375 0.261 0.308
DeepLabeler (CNN+D2V) 0.486 0.351 0.408

TABLE 6
The Best Parameters of Network Architecture

(CNN Part) on MIMIC-II

CNN part

word embedding size 100
Maximum length 700
convolutional kernel size 1, 3, 5
convolutional filter number 64, 64, 64
convolutional layer number 1
dropout rate 0.9

TABLE 7
The Best Parameters of Network Architecture

(D2V Part) on MIMIC-II

D2V part

document embedding size 128
the number of neurons in hidden layer 64
dropout rate 0.9
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evaluation metrics other than looser metrics used in other
multi-label or hierarchical classification. The limited number
of documents and the unbalanced ratio of ICD-9 codes in
MIMIC dataset are the main reasons for the poor F-measure in
the ICD-9 automatic coding. To better evaluate the perfor-
mance of our model, we compare the experiment results on
MIMIC-II and MIMIC-III, and find the performance of our
model is greatly improved (with F-measure of 0.408 versus
0.335) when training with the data of double size. We believe
that DeepLabeler has potential to acquire better performance if
sufficient good-quality data are available.

DeepLabeler, unlike traditional models, uses deep learn-
ing technique to extract features rather than BoW representa-
tion. BoW representation has difficulty in capturing rich
semantic information in large-scale clinical free texts. The
basic idea of DeepLabeler is to integrate two types of diverse
features to improve the performance of automated ICD-9
coding. DeepLabeler shows nearly 21 percent improvement
(0.408 versus 0.335) in F-measure over hierarchy-based SVM.
DeepLabeler uses two types of features: global features and
local features, which are both obtained by deep learning
methods, meaning that they can be extracted from the train-
ing data without human participation. The global features
are from an unsupervised learning model trained by all
words in documents and their appearance order is consid-
ered, while the local features are captured from the word-
level and phrase-level information without the order infor-
mation. The good performance gained by DeepLabeler is
due to the diversity and the accuracy of the captured fea-
tures, which complement to each other.

We emphasize that our strategy of capturing semantic
information of free texts in medical records is very efficient,
bringing about great improvements in model performance,
as shown in our experiments. To the best of our knowledge,
DeepLabeler is the first method to directly incorporate two
diverse semantic features implemented by deep learning in
automated ICD-9 coding.

4 CONCLUSION

Hospitals and healthcare providers rely on medical coding to
record medical services and related causes and conditions
during a patient visit. This coding process is normally done
manually and thus is very time-consuming. To reduce the time
and financial cost of manual coding, it is necessary to develop
an automatic ICD-9 coding system. In this problem, each ICD-
9 code can be regarded as a class label and eachmedical record
can have multiple ICD-9 codes, and so the ICD-9 automatic
coding is a large-scalemulti-label classification problem. In this
study, we presented DeepLabeler, which combined CNN part
with D2V part to extract local and global features. It obtained a
better performance on MIMIC-III dataset over the traditional
methods if only using discharge summaries from each patient.
Our computational results show that DeepLabeler achieved
about 15 percent increase in micro F-Measure over flat SVM or
hierarchy-based SVM. To better evaluate the proposed model,
we also applied it on MIMIC-II dataset and obtained 0.335 F-
measure value. The most important idea of DeepLabeler is to
integrate two types of diverse features: local features for words
or phrase, global features for document information. These
new features might shed light on developing efficient algo-
rithms for other multi-label classification problems in the field

of clinical free texts, with a large amount of training instances.
We analyze the deep neural network structure and find that
CNN is the most effective component in our network, which is
quite intuitive and makes sense. The D2V part in our model is
necessary for enhancing classification performance since it
extractswell-recognized global features.

There are two advantages of DeepLabeler. The first one is
that it can automatically extract effective representative fea-
tures. The second one is that we only need to train an end-
to-end model rather than thousands of binary classifiers,
and considered the dependency relationship between each
labels naturally. Therefore, DeepLabeler has the potential to
be applied to more interesting areas to understand and ana-
lyze medical record.

In the future, it would be interesting to further explore
the limitations of DeepLabeler and improve the coding per-
formance by incorporating other types of features and other
typical deep learning architectures, such as LSTM model
[53], [54], [55], attention model [27], [55], [56] which recently
achieved excellent results in addressing natural language
understanding tasks. We also expect that learning task can
be further improved by using more powerful architecture if
we have more high-quality data. In particular, we plan to
apply DeepLabeler to address other NLP tasks about medi-
cal records or literatures, for example, disease inference [57]
and MeSH indexing [30], [58].
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